ISTITUTO STATALE di ISTRUZIONE SUPERIORE

"ERNESTO BALDUCCI"

Via Aretina, 78A – 50065 Pontassieve (FI) Tel. 055 8316806 Fax 055 8316809

 $\texttt{EMAIL}: \underline{\texttt{FIIS}00800G@}\underline{\texttt{M}}\underline{\texttt{ISTRUZIONE.IT}} \textbf{-PEC}: \underline{\texttt{FIIS}00800G@}\underline{\texttt{PEC.ISTRUZIONE.IT}}$

www.istitutobalducci.gov.it

CODICE FISCALE: 94052770487 | CODICE UNIVOCO: UF7R2C

PROGRAMMA SVOLTO a.s. 2022 – 2023

Docente: prof. Riccardo Ferrati

Materia: Scienze Naturali

Classe: 3° C – Liceo delle Scienze Umane

Testi in adozione:

- 1. Simonetta Klein, *Il racconto della chimica e della Terra volume* 2, ed. Scienze Zanichelli
- 2. Sylvia S. Mader, *Immagini e concetti della biologia: dalle cellule agli organismi (seconda edizione*), Ed. Scienze Zanichelli

0. Elementi di introduzione e ripasso

Ripasso delle caratteristiche principali delle cellule eucariotiche e della mitosi cellulare.

La meiosi: scopo e fasi in cui si suddivide: Le varie fasi della meiosi I: tetradi, crossing over e produzione di cromosomi omologhi ricombinanti. La meiosi I e le sue fasi, la meiosi II e le sue fasi.

La riproduzione sessuata. Vantaggi e svantaggi di riproduzione sessuata e asessuata nei viventi. La riproduzione sessuata come fonte di variabilità genetica.

1. La genetica classica

Inquadramento della figura e del lavoro sperimentale di G. Mendel.

La teoria della mescolanza.

Incroci tra linee pure ed analisi dei risultati. Leggi di Mendel e loro consequenze. Genotipo e fenotipo. Corredi omozigoti ed eterozigoti.

Geni, alleli, cromosomi e cariotipo.

Costruzione di quadrati di Punnett. Testcross.

Cenni alle eccezioni alle leggi di Mendel.

Gruppi sanguigni umani e regole di compatibilità; il fattore Rh.

Definizione moderna di gene. Cenni alla struttura a doppia elica del DNA.

2. Lo studio della materia: la scoperta delle particelle subatomiche

Teoria atomica di John Dalton.

L'atomo e le particelle subatomiche. Massa e carica delle particelle subatomiche.

Esperimenti e modelli atomici di Thomson (modello a panettone) e Rutherford (modello planetario).

I tubi di Crookes.

Cenni al modello atomico di Bohr e agli sviluppi successivi.

Numero atomico e numero di massa; gli isotopi.

Radiazioni elettromagnetiche e suddivisione dello spettro elettromagnetico.

3. La struttura dell'atomo

Quantizzazione delle energie. Stato fondamentale e stato eccitato dell'elettrone, emissione di fotoni da parte degli elettroni e saggi alla fiamma. Funzionamento delle lampade al neon.

Onda associata ad un elettrone.

Nube elettronica e orbitale, contributo di Schrödinger. Funzioni d'onda, orbitali, numeri quantici. Forma degli orbitali: orbitali s, p, d.

Configurazione elettronica degli atomi e regola di Aufbau, principio di massima principio molteplicità di Hund, esclusione di Pauli. Esempi di configurazione elettronica di alcuni elementi.

4. Il sistema periodico

Il sistema periodico di Mendeleev. La moderna tavola periodica.

La lettura della tavola periodica, blocchi della tavola periodica.

Significato dei gruppi e dei periodi.

Le proprietà periodiche degli elementi: raggio atomico, affinità elettronica, energia di ionizzazione, elettronegatività.

La classificazione degli elementi e la loro configurazione elettronica esterna a cui sono collegate le proprietà chimiche: metalli, non metalli, semimetalli, lantanidi e attinidi (esempi di utilizzo e proprietà). Importanza del silicio nel settore della tecnologia.

5. I legami chimici e le molecole

Energia e forza di legame. I gas nobili e la regola dell'ottetto. Numero di legami che un atomo può formare. Orbitale atomico e orbitale molecolare di legame.

I legami forti: il legame covalente puro e polare, il legame dativo, il legame ionico e il legame metallico. Importanza della differenza di elettronegatività per stabilire il tipo di legame.

Legami covalenti singoli, doppi e tripli. Coppie di legame e coppie di non legame. Elettroni appaiati e spaiati.

Energie coinvolte nei processi di formazione dei legami. Teoria del legame di valenza. Polarità delle molecole: polarità dei legami e simmetria.

Teoria VSEPR: come prevedere geometria e forma delle molecole. Formule brute e di struttura (di Lewis). Procedura per costruire la formula di struttura a partire dalla formula bruta.

Legami deboli o intermolecolari: legame dipolo permanente - dipolo permanente, legame dipolo temporaneo – dipolo indotto (forze di London), legame a idrogeno. Il caso dell'acqua: diverso numero di legami a idrogeno nei tre stati di aggregazione (ghiaccio, acqua e vapore acqueo). Legame idrogeno tra acqua а ammoniaca, tra acqua e acido fluoridrico. Solidi cristallini: sali e minerali. Solidi amorfi. Definizione di reticolo e cella cristallina.

6. I minerali e le rocce

La litosfera. Struttura interna della Terra. Definizione e caratteristiche principali dei minerali. I silicati. Il salgemma. Le rocce ed il ciclo litogenetico. Il magma e le rocce magmatiche intrusive ed effusive. Rocce sedimentarie e rocce metamorfiche. Le rocce organogene: esempio della dolomia.

Esperienze laboratoriali e altre attività legate allo svolgimento del programma:

- Diversa reattività dei metalli alcalini in acqua
- Osservazione del funzionamento di diversi tipi di tubi di Crookes

- Esperienze sulle proprietà elettriche della materia utilizzando il generatore di Van der Graaf e l'elettroscopio a foglie d'oro
- Osservazione e descrizione di rocce di tipo diverso (breccia, conglomerato, arenaria, marmo, basalto e granito)
- Partecipazione in auditorium al seminario "*Transizione energetica e materie prime critiche: l'esempio del litio*" in collaborazione con Pianeta Galileo

Firma del Docente	Firme degli studenti